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Abstract. Scattering of waves and particles fromN discs fixed in a plane is studied. Various
boundary conditions on the scatterers, corresponding to mesoscopic quantum physics, acoustics
or electromagnetism, are considered. An exact formalism allowing us to calculate theS-matrix,
its scattering resonances and far-field form functions is developed for systems with discrete
C2v , C3v andC4v symmetries. It extends the Korringa–Kohn–Rostoker method developed in the
context of solid state physics and generalizes the works of Berry and of Gaspard and Rice in
quantum chaos.

1. Introduction

Recently, scattering of a point particle fromN hard discs fixed in a plane has been
extensively studied in the context of ‘quantum chaos’. For reviews on the subject, see [1–4]
and for some recent papers, see [5–10]. In these works, the exact calculations are performed
from theS-matrix formalism developed by Gaspard and Rice [11]. These two authors have
presented the exact quantum mechanics of the scattering of a point particle from a three-disc
scatterer by emphasizing the role of the symmetries of the system. Their method is inspired
by the work of Berry on the quantization of a bounded classically chaotic system [12].
Berry’s quantum formalism was based on the Korringa–Kohn–Rostoker (KKR) method
developed in the context of solid state physics [13–15]. In the perspective of the study of
chaotic scattering in more realistic problems such as scattering of waves in acoustics or
electromagnetism and of particles in mesoscopic quantum physics, it is useful to generalize
the Gaspard and Rice approach. In such situations, it will be possible and interesting to
experimentally confirm the theoretical results and the new physical effects expected.

In this paper, we are concerned with scattering byN discs presenting various boundary
conditions. In section 2, theS-matrix is defined and obtained from two sets of coefficients
defining the partial waves and their gradients on the boundaries of theN discs. Then we
construct the associated far-field form functions. In section 3, we consider some particular
boundary conditions:

—Dirichlet boundary condition in quantum mechanics, in acoustics and in
electromagnetism (particle scattering by hard discs [1–11], ultrasonic wave scattering by
soft discs and microwave scattering by metallic conductors [16]),
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Figure 1. N -discs system geometry: various coordinates for an arbitrary point M.

—Neumann boundary condition in acoustics (ultrasonic wave scattering by hard discs),
—impedance boundary conditions in electromagnetism (transverse magnetic (TM) and

transverse electric (TE) scattering by conductors with a given constant impedance),
—mixed boundary conditions in quantum mechanics (particle scattering by a square

well and by a square barrier in the ‘overdense’ and ‘underdense’ cases),
—elastic boundary conditions in acoustics (ultrasonic wave scattering by elastic

cylinders immersed in water).
In section 4, we examine special configurations presenting discreteC2v, C3v and
C4v symmetries. The Korringa–Kohn–Rostoker–Berry (KKRB) method permits us to
easily integrate symmetry considerations and to expand theS-matrix on the irreducible
representations of symmetry groups [11–17]. In a short appendix, the properties of the
S-matrix (unitarity and reciprocity) are linked to the properties of the coefficients defining
the partial waves and their gradients on the boundaries of the discs.

2. S-matrix: general theory

2.1. Geometry of theN -discs system. Definition of theS-matrix

We consider a set ofN identical and parallel cylinders of radiusa. Cylinders are parallel to
theOz axis so that the system can be seen as a set ofN non-overlapping discs in the plane
Oxy. The geometry of the system as well as the notations used are shown in figure 1. In
particular, we denoteOi the centre of scattereri, (ri, θi) the system of polar coordinates
centred onOi and(r, θ) the system centred onO. Furthermore,si is the distanceOOi , rij
the distanceOiOj , φi the angle betweenOx andOOi , andφij the angle betweenOx and
OiOj .

We consider the partial wave solutionφm of the following problem:
(i) φm satisfies the Helmholtz equation (or time-independent Schrödinger equation)

(1+ k2)φm = 0 (1)
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where1 is the two-dimensional Laplacian,
(ii) φm and its gradient∇φm are given on the boundaries of theN discs by

φm(x) =
+∞∑

p=−∞
A(i)mpeipθi (x) (2)

ni ·∇φm(x) =
+∞∑

p=−∞
B(i)mpeipθi (x) (3)

whereA(i)mp and B(i)mp are two sets of unknown matrices,x is an arbitrary point on the
boundary of disci, ni is a unit normal vector directed into disci at the pointx andθi(x)
the angular coordinate of the pointx,

(iii) at large distance,φm has the asymptotic behaviour

φm(r, θ) ∼
r→∞

1√
2πkr

+∞∑
p=−∞

[e−i(kr−pπ/2−π/4)δmp + ei(kr−pπ/2−π/4)Smp]eipθ . (4)

The last equation defines the elementsSmp of the S-matrix [18].
The far-field form function is expressible directly in terms of theS-matrix and is given

by [11]

f∞(θ, α) = 1√
πka

+∞∑
m=−∞

+∞∑
p=−∞

e−im(α− π
2 )(Smp − δmp)eip(θ− π

2 ) (5)

whereα and θ respectively denote the angles of incidence and observation. We shall be
equally interested in the total scattering cross section averaged over all the anglesα andθ
and given by

σ tot = 4

πka

+∞∑
m=−∞

+∞∑
p=−∞

|Smp − δmp|2. (6)

2.2. Calculation of theS-matrix. Extension of the KKRB method

2.2.1. The KKRB method.Let us consider an arbitrary closed domainD of the plane and
its boundary∂D. Green’s theorem (see for example [19])∫

D

dV (f1g − g1f ) =
∫
∂D

dS · (f∇g − g∇f ) (7)

taking for g the partial waveφm andf the free space Green’s function

Gk(x,x
′) = i

4
H
(1)
0 (k|x− x′|) (8)

which satisfies(1x+ k2)Gk(x,x
′) = −δ(x−x′), permits us to expressφm(x) in terms of

the values ofφm andGk on the boundary∂D. We obtain

φm(x) =
∫
∂D

dSx′ · [Gk(x,x
′)∇x′φm(x

′)− φm(x′)∇x′Gk(x,x
′)] (9)

where dSx′ denotes the surface element pointing away from the interior of the domainD.
In the following, we shall use the particular contour∂D shown in figure 2 and defined by

∂D = ∂D∞ ∪
( N⋃
i=1

∂Di

)
(10)



7868 Y Decanini et al

Figure 2. DomainD and its boundary∂D.

where ∂D∞ is a circle at large distance from theN -discs system and∂Di is one circle
centred on disci but a little larger than the disc itself.

We use equation (9) in two steps:
—first, we choose for the extremity of the vectorx a point belonging to the surface of

a scatterer and we calculate the line integral over∂D. We thus obtain an equation linking
the two sets of coefficientsA(i)mp andB(i)mp,

—then, we choose for the extremity of the vectorx a point belonging to the domain
D at large distance from the system composed by theN discs. We then express the matrix
elementsSmp in terms of the two sets of coefficientsA(i)mp andB(i)mp.

The reader who simply wishes to calculate theS-matrix and is not especially interested
in following the derivation can directly use equation (37)–(42) and (54)–(56).

2.2.2. First step:x belongs to the surface of scattereri0. In this part of the study,x lies
on the surface of scattereri0. Becausex does not belong to the domainD, φm(x) = 0, and
equation (9) reads

0= I∞(x)+ Ii0(x)+
j=N∑

j=1(j 6=i0)
Ij (x) (11)

with I∞(x) the integral over∂D∞, Ii0(x) the integral over∂Di0, and Ij (x) the one over
∂Dj defined by

I∞(x) =
∫
∂D∞

dSx′ · [Gk(x,x
′)∇x′φm(x

′)− φm(x′)∇x′Gk(x,x
′)] (12)

Ii0(x) =
∫
∂Di0

dSx′ · [Gk(x,x
′)∇x′φm(x

′)− φm(x′)∇x′Gk(x,x
′)] (13)
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Ij (x) =
∫
∂Dj

dSx′ · [Gk(x,x
′)∇x′φm(x

′)− φm(x′)∇x′Gk(x,x
′)]. (14)

We first evaluate the line integral at large distanceI∞(x). In this case,x = (r, θ)

belongs to∂Di0 and x′ = (r ′, θ ′) to ∂D∞, so thatr ′ > r. Consequently, from Graf’s
theorem [20],Gk(x,x

′) can be written in the form

Gk(x,x
′) = i

4

+∞∑
p=−∞

Jp(kr)H
(1)
p (kr ′)eip(θ−θ ′) (15)

with

H(1)
p (kr ′) ∼

r ′→∞

√
2

πkr ′
ei(kr ′−pπ/2−π/4). (16)

Therefore we have

n′ · ∇x′Gk(x,x
′) = ikGk(x,x

′)+ Or ′→∞

(
1

(r ′)3/2

)
(17)

wheren′ is an unit vector normal to∂D∞. Furthermore, from equation (4), we obtain

∂φm(x
′)

∂r ′
− ikφm(x

′) = 1√
2πkr ′

(−2ik)e−i(kr ′−mπ/2−π/4)eimθ ′+ Or ′→∞

(
1

(r ′)3/2

)
. (18)

We finally find

I∞(x) = Jm(kr)eimθ . (19)

I∞(x) has been expressed in terms of the coordinates(r, θ) of x. In order to express it
in terms of the coordinates centred on scattereri0 (see figure 3), we use Graf’s addition
theorem [19]

Jm(kr)e
im(φi0−θ) =

+∞∑
p=−∞

Jm+p(ksi0)Jp(ka)e
ip(π−φi0+θi0) (20)

and we obtain

I∞(x) = eimφi0

+∞∑
p=−∞

Jm−p(ksi0)Jp(ka)e
ip(θi0−φi0). (21)

We then evaluate the line integralIi0(x). We can writeIi0(x) = I (1)i0 (x)− I
(2)
i0
(x) with

I
(1)
i0
(x) =

∫
∂Di0

dSx′ · [Gk(x,x
′)∇x′φm(x

′)] (22)

and

I
(2)
i0
(x) =

∫
∂Di0

dSx′ · [φm(x′)∇x′Gk(x,x
′)]. (23)

As far as the calculation ofI (1)i0 (x) is concerned, we directly obtain

I
(1)
i0
(x) = iπa

2

+∞∑
p=−∞

B(i0)mp Jp(ka)H
(1)
p (ka)eipθi0 (24)

by expressingGk(x,x
′) in the coordinate system(Oi0xy). The calculation ofI (2)i0 (x) is not

so obvious because it is only at the end of the calculation that we shall take the limit in
which ∂Di0 tends to the boundary of disci0 (see figure 4).
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Figure 3. From the coordinate system(r, θ) to the coordinate system(ri0 = a, θi0).

Figure 4. Disc i0 and its boundary.

We also expressGk(x,x
′) in the coordinate system(Oi0xy). We have

Gk(x,x
′) = i

4

+∞∑
p=−∞

Jp(ka)H
(1)
p (kr ′i0)e

ip(θi0−θ ′i0) (25)

so that

n′ · ∇x ′Gk(x,x
′) = − ik

4

+∞∑
p=−∞

Jp(ka)H
(1)′
p (ka)eip(θi0−θ ′i0). (26)
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We then obtain

I
(2)
i0
(x) = − iπa

2

+∞∑
p=−∞

kA(i0)mp Jp(ka)H
(1)′
p (ka)eipθi0 . (27)

Thus, the line integralIi0(x) is given by

Ii0(x) =
iπa

2

+∞∑
p=−∞

Jp(ka)e
ipθi0 [B(i0)mp H

(1)
p (ka)+ kA(i0)mpH

(1)′
p (ka)]. (28)

We finally evaluate the integralsIj (x) for j 6= i0. We haveIj (x) = I (1)j (x) − I (2)j (x)
with

I
(1)
j (x) =

∫
∂Dj

dSx′ · [Gk(x,x
′)∇x′φm(x

′)] (29)

and

I
(2)
j (x) =

∫
∂Dj

dSx′ · [φm(x′)∇x′Gk(x,x
′)]. (30)

As far as the calculation ofI (1)j (x) is concerned, we directly obtain

I
(1)
j (x) = iπa

2

+∞∑
p=−∞

B(j)mpJp(ka)H
(1)
p (krj )e

ipθj (31)

by expressingGk(x,x
′) in the coordinate system(Ojxy). In this case,x still belongs to

the boundary of disci0, but nowx′ lies on∂Dj (see figure 5).H(1)
p (krj ) can be expressed

in the coordinate system(ri0, θi0) by using Graf’s theorem

H(1)
p (krj )e

ip(φji0−θj ) =
+∞∑
q=−∞

H
(1)
p+q(kri0j )Jq(ka)e

iq(π−φji0+θi0). (32)

We then obtain

I
(1)
j (x) = iπa

2

+∞∑
p=−∞

+∞∑
q=−∞

B(j)mqJq(ka)Jp(ka)H
(1)
q−p(kri0j )e

i(q−p)φji0 eipθi0 . (33)

The calculation ofI (2)j (x) is similar to that ofI (1)j (x). From the relation

n′j · ∇x′Gk(x,x
′) = − ik

4

+∞∑
p=−∞

J
′
p(ka)H

(1)
p (krj )e

ip(θj−θ ′j ) (34)

we obtain

I
(2)
j (x) = − iπa

2

+∞∑
p=−∞

+∞∑
q=−∞

kA(j)mqJ
′
q(ka)Jp(ka)H

(1)
q−p(kri0j )e

i(q−p)φji0 eipθi0 . (35)

Finally, from equations (33) and (35), we have

Ij (x) = iπa

2

+∞∑
p=−∞

+∞∑
q=−∞

ei[(q−p)φji0+pθi0 ]Jp(ka)H
(1)
q−p(kri0j )[B

(j)
mqJq(ka)+ kA(j)mqJ

′
q(ka)].

(36)

By combining equations (21), (28) and (36), in equation (11), we find

C(i)mp =
N∑
j=1

+∞∑
q=−∞

{B̃(j)mqM(ij)
qp + Ã(j)mqN(ij)

qp } (37)
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Figure 5. From the coordinate system(rj , θj ) to the coordinate system(ri0, θi0 ).

where

B̃(j)mq = B(j)mqeiqφj and Ã(j)mq = kA(j)mqeiqφj (38)

and

C(i)mp = eimφi
Jm−p(ksi)

H
(1)
p (ka)

. (39)

Here the matricesM(ij)
qp andN(ij)

qp are given by

M(ij)
qp =

πa

2i

{
δqpδij + Jq(ka)

H
(1)
p (ka)

H
(1)
q−p(krij )ξij (p, q)

}
(40)

N(ij)
qp =

πa

2i

{
H(1)′
q (ka)

H
(1)
p (ka)

δqpδij +
J
′
q(ka)

H
(1)
p (ka)

H
(1)
q−p(krij )ξij (p, q)

}
(41)

with

ξij (p, q) =
{

0 if i = j
eip(φi−φji )eiq(φji−φj ) if i 6= j .

(42)

2.2.3. Second step:x is at a large distance from theN -disc scatterer inside domainD.
Now we choosex at a large distance from theN -disc scatterer and inside domainD, so
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thatφm(x) is given by its asymptotic behaviour in equation (4). So, in this case, equation (9)
reads

J∞(x)+
N∑
i=1

Ji(x) = 1√
2πkr

+∞∑
p=−∞

[e−i(kr−pπ/2−π/4)δmp + ei(kr−pπ/2−π/4)Smp]eipθ (43)

with

J∞(x) =
∫
∂D∞

dSx′ · [Gk(x,x
′)∇x′φm(x

′)− φm(x′)∇x′Gk(x,x
′)] (44)

and

Ji(x) =
∫
∂Di

dSx′ · [Gk(x,x
′)∇x′φm(x

′)− φm(x′)∇x′Gk(x,x
′)]. (45)

We first evaluate the line integralJ∞(x) at large distance. It should be noted thatr < r ′.
Indeedr ′ is on the boundary∂D∞ while r, which is far from the diffusors, still remains
inside domainD. Consequently, the calculation ofJ∞(x) is the same that the calculation
of I∞(x) performed in section 2.2.2. We have

J∞(x) = Jm(kr)eimθ . (46)

Moreover, sincer tends to infinity,J∞(x) is given by

J∞(x) ∼
r→∞

1√
2πkr

+∞∑
p=−∞

[e−i(kr−mπ/2−π/4)δmp + ei(kr−mπ/2−π/4)δmp]eipθ . (47)

We then evaluate the line integralJi(x). We can write

Ji(x) = J (1)i (x)− J (2)i (x) (48)

with

J
(1)
i (x) =

∫
∂Di

dSx′ · [Gk(x,x
′)∇x′φm(x

′)] (49)

and

J
(2)
i (x) =

∫
∂Di

dSx′ · [φm(x′)∇x′Gk(x,x
′)]. (50)

In order to evaluateJ (1)i (x), we first expressGk(x,x
′) in the coordinate system(ri, θi).

Then, by using Graf’s addition theorem (see figure 6), we expressGk(x,x
′) in the coordinate

system(r, θ).
As a consequence, we obtain

J
(1)
i (x) = iπa

2

+∞∑
p=−∞

+∞∑
q=−∞

B(i)mqeiqφi Jq(ka)H
(1)
p (kr)Jp−q(ksi)eip(θ−φi). (51)

In this case,H(1)
p (kr) is still given by its asymptotic expansion for large arguments

(equation (16)). In order to calculateJ (2)i (x), we still expressGk(x,x
′) in the coordinate

system(ri, θi), so that the gradient is still given by equation (34). Thus, we obtain

J
(2)
i (x) = − iπa

2

+∞∑
p=−∞

+∞∑
q=−∞

kA(i)mqeiqφi J ′q(ka)H
(1)
p (kr)Jp−q(ksi)eip(θ−φi). (52)

Finally, from equations (51) and (52), we find

Ji(x) = iπa

2

+∞∑
p=−∞

+∞∑
q=−∞

H(1)
p (kr)Jp−q(ksi)eip(θ−φi)eiqφi [B(i)mqJq(ka)+ kA(i)mqJ

′
q(ka)] (53)
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Figure 6. From the coordinate system(ri , θi ) to the coordinate system(r, θ).

with H(1)
p (kr) given by its asymptotic expansion for large arguments.

Introducing the results established in equations (47) and (53) in equation (43), we obtain

Smp = δmp + i
N∑
j=1

+∞∑
q=−∞

[B̃(j)mqD
(j)
qp + Ã(j)mqE(j)qp ] (54)

where the matrix elements̃A(j)mq and B̃(j)mq are given by equation (38) and the matricesD(j)
qp

andE(j)qp by

D(j)
qp = πae−ipφj Jp−q(ksj )Jq(ka) (55)

and

E(j)qp = πae−ipφj Jp−q(ksj )J
′
q(ka). (56)

3. Study of some particular boundary conditions

3.1. Dirichlet boundary condition

In quantum mechanics, when we study the particle scattering by hard discs, a Dirichlet
boundary condition must be satisfied by the wavefunction [1–12]. In acoustics, it also
must be satisfied by the pressure field describing ultrasonic wave scattering by soft discs.
Similarly, in electromagnetism and more particularly in the study of microwave scattering by
perfect metallic conductors [16], this boundary condition must be satisfied by the transverse
component of the electric field. In all those cases, the partial waveφm(x) vanishes on the
boundaries of theN discs, so

Ã(i)mp = 0 for i = 1, . . . , N. (57)



ExactS-matrix forN -disc systems: I 7875

In contrast, the gradient of the partial waveφm(x) is defined by the unknown coefficients
B̃(i)mp given by equation (3). Consequently, theS-matrix given by equation (54) reduces to

Smp = δmp + i
N∑
j=1

+∞∑
q=−∞

B̃(j)mqD
(j)
qp . (58)

Here D(j)
qp is given by equation (55) and the coefficients̃B(j)mp are determined from

equation (37) by

C(i)mp =
N∑
j=1

+∞∑
q=−∞

B̃(j)mqM
(ij)
qp (59)

with C(i)mp andM(ij)
qp are given by equations (39) and (40).

3.2. Neumann boundary condition

In acoustics, the pressure field describing ultrasonic wave scattering by hard discs satisfies a
Neumann boundary condition. In that case, the gradient of the partial waveφm(x) vanishes
on the boundaries of theN discs, thus

B̃(i)mp = 0 for i = 1, . . . , N. (60)

Now, the partial waveφm(x) is defined by the unknown coefficients̃A(i)mp given by
equation (2). Consequently, theS-matrix given by equation (54) reduces to

Smp = δmp + i
N∑
j=1

+∞∑
q=−∞

∼
A
(j)

mqE
(j)
qp . (61)

Here E(j)qp is given by equation (56) and the coefficients
∼
A
(j)

mp are determined from
equation (37) by

C(i)mp =
N∑
j=1

+∞∑
q=−∞

∼
A
(j)

mqN
(ij)
qp

with C(i)mp andN(ij)
qp are given by equations (39) and (41).

3.3. Impedance boundary conditions

In electromagnetism and more particularly in the study of microwave scattering by metallic
conductors with a given constant impedanceZ, the impedance boundary condition must be
satisfied by the transverse components of the electric and magnetic fields. More precisely,
the partial waveφm(x) and its gradient are linked on the boundaries of theN discs by (see
for example [21])

∂φm

∂ri
+ ikζφm = 0. (62)

For TM-waves,ζ = Z, while for TE-waves,ζ = 1/Z. We then obtain
∼
B
(i)

mp = iζ
∼
A
(i)

mp for i = 1, . . . , N.

Consequently, theS-matrix given by equation (54) reduces to

Smp = δmp + i
N∑
j=1

+∞∑
q=−∞

∼
A
(j)

mq [iζD(j)
qp + E(j)qp ]. (63)
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HereD(j)
qp andE(j)qp are respectively given by equations (55) and (56) and the coefficients

∼
A
(j)

mp are determined from the following system

C(i)mp =
N∑
j=1

+∞∑
q=−∞

∼
A
(j)

mq [iζM(ij)
qp +N(ij)

qp ] (64)

with C(i)mp, M(ij)
qp andN(ij)

qp are respectively given by equations (39)–(41).

3.4. Mixed boundary conditions

Such boundary conditions occur in quantum mechanics for the wavefunction describing
particle scattering by a square well and by a square barrier in the ‘overdense’ and
‘underdense’ cases. In that case, equation (1) is the time-independent Schrödinger equation
and the corresponding potentialV (r) vanishes outside the discs and is constant inside each
disc where it takes the valueV0. We denote byE > 0 the total energy of the incident
particle. Then the wavenumbers outside and inside the discs are respectively given by
k = (1/h̄)√2mE andk′ = nk with the refraction indexn = √1− V0/E.

The expression of the inner wavefunction in each disci can be written in the form

φ
(i)

int =
+∞∑

p=−∞
c(i)mpJp(k

′ri)eipθi (65)

where thec(i)mp are a set of unknown coefficients which can be linked to the coefficients
A(i)mp andB(i)mp by using the continuity of the wavefunction and its normal derivative on the
boundaries of theN discs. We obtain

A(i)mp = c(i)mpJp(k′a) (66)

B(i)mp = −k′c(i)mpJ
′
p(k
′a). (67)

We then find that theS-matrix is given by

Smp = δmp + i
N∑
j=1

+∞∑
q=−∞

c̃(j)mqF
(j)
qp (68)

with

F (j)qp = πae−ipφj Jp−q(ksj )D[1]
q (69)

and the coefficients̃c(j)mq = c(j)mqeiqφj are the solution of the following system (equation (37))

C(i)mp =
N∑
j=1

+∞∑
q=−∞

c̃(j)mqM
(ij)
qp (70)

with

C(i)mp = −eimφi
Jm−p(ksi)
Dp

(71)

M(ij)
qp =

πa

2i

{
δqpδij −

D[1]
q

Dp
H
(1)
q−p(krij )ξij (p, q)

}
. (72)

The coefficientsD[1]
q andDp are 2× 2 determinants which take into account the boundary

conditions and are given by

D[1]
q =

∣∣∣∣ kJ ′q(ka) k′J ′q(k
′a)

Jq(ka) Jq(k
′a)

∣∣∣∣ andDp = −
∣∣∣∣ kH(1)′

p (ka) k′J ′p(k
′a)

H (1)
p (ka) Jp(k

′a)

∣∣∣∣ . (73)
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3.5. Elastic boundary conditions

Elastic boundary conditions occur in acoustics in the study of ultrasonic wave scattering by
elastic cylinders immersed in water or in a perfect fluid. In that case, the determination of the
coefficientsA(i)mp andB(i)mp is more complicated: it involves the scalar and vector potentials
associated respectively with compressional and shear waves [22] and it is necessary to write,
at the surface of each cylinder, the continuity of the radial component of displacement and
of the normal component of the stress tensor. After tedious calculations, one finds [23]

Smp = δmp + i
N∑
j=1

+∞∑
q=−∞

ã(j)mqG
(j)
qp (74)

with

G(j)
qp = πae−ipφj Jp−q(ksj )D[1]

q . (75)

The coefficients̃a(j)mq , which define the vector displacement potential of cylinderj , are the
solution of

C(i)mp =
N∑
j=1

+∞∑
q=−∞

ã(j)mqM
(ij)
qp (76)

with

C(i)mp = −eimφi
Jm−p(ksi)
Dp

(77)

M(ij)
qp =

πa

2i

{
δqpδij −

D[1]
q

Dp
H
(1)
q−p(krij )ξij (p, q)

}
. (78)

HereD[1] andD are the usual 3× 3 determinants defining the scattering wave by only one
cylinder and which take into account the boundary conditions [24]. They are given by

D[1]
q =

∣∣∣∣∣ −(kT a)
2Jq(ka) d12 d13

(ρ ′/ρ)kaJ
′
q(ka) d22 d23

0 d32 d33

∣∣∣∣∣ (79)

Dq = −
∣∣∣∣∣∣
−(kT a)2H(1)

q (ka) d12 d13

(ρ ′/ρ)kaH(1)′
q (ka) d22 d23

0 d32 d33

∣∣∣∣∣∣ (80)

with

d12 = [(kT a)
2− 2q2]Jq(kLa)+ 2kLaJ

′
q(kLa) (81)

d22 = −kLaJ ′q(kLa) (82)

d32 = 2q[kLaJ
′
q(kLa)− Jq(kLa)] (83)

d13 = 2q[xT J
′
q(kT a)− Jq(kT a)] (84)

d23 = qJq(kT a) (85)

d33 = [(kT a)
2− 2q2]Jq(kT a)+ 2kT aJ

′
q(kT a). (86)

Herek is the wavenumber in the fluid medium linked to the velocityc of sound byk = ω/c
(ω denotes the angular frequency of the incident wave).kL and kT are respectively
the wavenumbers associated with compressional and shear waves propagating inside the
cylinders. They are linked to the velocitiescL andcT of compressional and shear waves by
kL = ω/cL andkT = ω/cT . Furthermore,ρ andρ ′ denote respectively the density of the
fluid and that of the scatterers.
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3.6. Summary

It is easy to show that, for all the boundary conditions studied above, theS-matrix is
expressible in the form

Smp = δmp + i
N∑
j=1

+∞∑
q=−∞

∼
X
(j)

mqE
(j)
qp (87)

where the unknown coefficients
∼
X
(j)

are deduced from the following system

C(i)mp =
N∑
j=1

+∞∑
q=−∞

∼
X
(j)

mqM
(ij)
qp (88)

with the matricesC, M andE given by

C(i)mp = −eimφi
Jm−p(ksi)
Dp

(89)

M(ij)
qp =

πa

2i

{
δqpδij −

D[1]
q

Dp
H
(1)
q−p(krij )ξij (p, q)

}
(90)

E(j)qp = πae−ipφj Jp−q(ksj )D[1]
q . (91)

Here D[1] and D are determinants taking into account the boundary conditions. For a
Dirichlet boundary condition, one writes

D[1]
q = Jq(ka) (92)

Dq = −H(1)
q (ka). (93)

For a Neumann boundary condition, we have

D[1]
q = J ′q(ka) (94)

Dq = −H(1)′
q (ka). (95)

For impedance boundary conditions,D[1] andD read

D[1]
q = J ′q(ka)+ iζJq(ka)

Dq = −(H (1)′
q (ka)+ iζH (1)

q (ka)).

For mixed boundary conditions, the determinantsD[1]
q andDq are expressed in equations

(73). And for elastic boundary conditions, they are expressed in equations (79) and (80).
In matrix notation, equations (87) and (88) become

S = I + iX̃E (96)

and

C = X̃M. (97)

Thus we can write

S = I + iCM−1E. (98)

Consequently, the poles of theS-matrix, which are intrinsic to the scatterer, appear through
the inversion of the matrixM. The scattering resonances are thus the complex zeros of the
characteristic determinant

detM(ka) = 0 (99)

in the complexka-plane.



ExactS-matrix forN -disc systems: I 7879

Figure 7. (a) SymmetryC2v . (b) SymmetryC3v . (c) SymmetryC4v.

4. Symmetry considerations

4.1. General aspects

In what follows, we shall study three different configurations presenting symmetry properties
(figure 7):

—the two-disc scatterer. This system is invariant under the symmetry groupC2v. We
denote byd the separation distance between the centres of the scatterers,

—the three-disc scatterer. The centres of the discs are located at the vertices of an
equilateral triangle of sided. The three-disc system is invariant under the symmetry group
C3v,

—the four-disc scatterer. The centres of the discs are located at the vertices of a square
of sided. This system is invariant under the symmetry groupC4v.

In these three cases, symmetry properties of the scatterers permit us to simplify the
formalism of sections 2 and 3. Indeed it is possible to expand the partial waveφm in terms
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Table 1. Character table ofC2v .

C2v : E C2 σx σy

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

of the irreducible representations of the symmetry groups. Let us consider a finite symmetry
groupG of orderg. This group is made up of the geometric transformationsR leaving the
system invariant. We denote by0 the set of thenγ -dimensional irreducible representations
γ associated withG. We can write [17]

φm =
∑
γ∈0

nγ∑
i=1

(φm)
(γ )

i (100)

with

(φm)
(γ )

i =
nγ

g

∑
R∈G

D
(γ )∗
ii (R)(ORφm) (101)

whereOR denotes the linear operators associated with the transformationsR of the group
G. D(γ )

ii (R) represent the diagonal elements (or characters) of the representative matrixD

of the symmetry group in the representationγ .
In the following, we shall split equations (96) and (97) over the different representations

of the symmetry group considered. Thus, we solve the problem described by equations (1)–
(4) for the component(φm)(γ ) of the partial wave.

4.2. SymmetryC2v

The transformations of the symmetry groupC2v of orderg = 4 areE, C2, σx andσy . E
denotes the identity transformation,C2 the rotation throughπ about the main axisOz of
figure 7(a), σx and σy the mirror reflections in the two planesOxz andOyz. Four one-
dimensional irreducible representations labelled byA1, A2, B1, B2 are associated with this
symmetry group. Table 1 is the corresponding character table.

The character table permits us to split up any functionf given by

f =
+∞∑

p=−∞
fpeipθ (102)

as a sum of functions belonging to the four irreducible representations ofC2v

f = f A1 + f A2 + f B1 + f B2. (103)

We have

f A1 = 1
4

+∞∑
p=−∞

[1+ (−1)p](fp + f−p)eipθ (104)

f A2 = 1
4

+∞∑
p=−∞

[1+ (−1)p](fp − f−p)eipθ (105)

f B1 = 1
4

+∞∑
p=−∞

[1− (−1)p](fp + f−p)eipθ (106)
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f B2 = 1
4

+∞∑
p=−∞

[1− (−1)p](fp − f−p)eipθ . (107)

We deduce from the previous equations the asymptotic behaviour ofφm in the different
representations and, as a consequence, the expression ofC(1)mp given in equation (89) in each
representation. So, we obtain

C(1)A1
mp = − im + i−m

4

[
Jm−p(kd/2)

Dp
+ (−1)p

Jm+p(kd/2)
Dp

]
(108)

C(1)A2
mp = − im + i−m

4

[
Jm−p(kd/2)

Dp
− (−1)p

Jm+p(kd/2)
Dp

]
(109)

C(1)B1
mp = − im − i−m

4

[
Jm−p(kd/2)

Dp
− (−1)p

Jm+p(kd/2)
Dp

]
(110)

C(1)B2
mp = − im − i−m

4

[
Jm−p(kd/2)

Dp
+ (−1)p

Jm+p(kd/2)
Dp

]
. (111)

Now, we would like to split equation (97) in the four representationsA1, A2, B1, B2.
In each representation, the unknown coefficientsX̃(j) respectively satisfy

∼
X
(1)A1

mp =
∼
X
(2)A1

mp and
∼
X
(i)A1

m−p =
∼
X
(i)A1

mp (112)

∼
X
(1)A2

mp =
∼
X
(2)A2

mp and
∼
X
(i)A2

m−p = −
∼
X
(i)A2

mp (113)

∼
X
(1)B1

mp = −
∼
X
(2)B1

mp and
∼
X
(i)B1

m−p = −
∼
X
(i)B1

mp (114)

∼
X
(1)B2

mp = −
∼
X
(2)B2

mp and
∼
X
(i)B2

m−p =
∼
X
(i)B2

mp . (115)

We finally deduce

C(1)A1
mp = πa

2i

+∞∑
q=0

∼
X
(1)A1

mq

{
δqp − (−1)q

γq

2

D[1]
q

Dp
[H(1)

q−p(kd)+ (−1)pH (1)
q+p(kd)]

}
(116)

C(1)A2
mp = πa

2i

+∞∑
q=1

∼
X
(1)A2

mq

{
δqp − (−1)q

D[1]
q

Dp
[H(1)

q−p(kd)− (−1)pH (1)
q+p(kd)]

}
(117)

C(1)B1
mp = πa

2i

+∞∑
q=1

∼
X
(1)B1

mq

{
δqp + (−1)q

D[1]
q

Dp
[H(1)

q−p(kd)− (−1)pH (1)
q+p(kd)]

}
(118)

C(1)B2
mp = πa

2i

+∞∑
q=0

∼
X
(1)B2

mq

{
δqp + (−1)q

γq

2

D[1]
q

Dp
[H(1)

q−p(kd)+ (−1)pH (1)
q+p(kd)]

}
. (119)

Similarly, from the asymptotic behaviour ofφm in the different representations and from
the properties (112)–(115) of the unknown coefficientsX̃(j), we determine the expression
of the S-matrix in each representation. By combining all those results, we obtain

Smp = δmp + iπa(ip + i−p)
+∞∑
q=0

γq

2

∼
X
(1)A1

mq D[1]
q

[
Jp−q

(
kd

2

)
+ (−1)qJp+q

(
kd

2

)]

+iπa(ip + i−p)
+∞∑
q=1

∼
X
(1)A2

mq D[1]
q

[
Jp−q

(
kd

2

)
− (−1)qJp+q

(
kd

2

)]
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Table 2. Character table ofC3v .

C3v : E(1) C3, C
2
3(2) σx, σu, σv(3)

A1 1 1 1
A2 1 1 −1
E 2 −1 0

+iπa(ip − i−p)
+∞∑
q=1

∼
X
(1)B1

mq D[1]
q

[
Jp−q

(
kd

2

)
− (−1)qJp+q

(
kd

2

)]

+iπa(ip − i−p)
+∞∑
q=0

γq

2

∼
X
(1)B2

mq D[1]
q

[
Jp−q

(
kd

2

)
+ (−1)qJp+q

(
kd

2

)]
. (120)

4.3. SymmetryC3v

The symmetry groupC3v is a non-Abelian group of orderg = 6. Its elements areE, C3,
C2

3, σx , σu and σv. E denotes the identity transformation,C3 the rotation through 2π/3
about the main axisOz of figure 7(b), C2

3 the rotation through 4π/3 about the same axis,
σx , σu andσv the mirror reflections respectively in the planesOxz, Ouz andOvz. Three
irreducible representations labelled byA1, A2, E are associated with this symmetry group.
A1 andA2 are one-dimensional, whileE is two-dimensional. Table 2 is the corresponding
character table.

Table 2 permits us to split up any functionf given by

f =
+∞∑

p=−∞
fpeipθ (121)

as a sum of functions belonging to the three irreducible representations ofC3v

f = f A1 + f A2 + f E. (122)

We have

f A1 = 1
6

+∞∑
p=−∞

[1+ εp + ε2p](fp + f−p)eipθ (123)

f A2 = 1
6

+∞∑
p=−∞

[1+ εp + ε2p](fp − f−p)eipθ (124)

f E(1) = 1
3

+∞∑
p=−∞

[1+ εp+1+ ε2(p+1)]fpeipθ (125)

f E(2) = 1
3

+∞∑
p=−∞

[1+ εp−1+ ε2(p−1)]fpeipθ (126)

whereε = ei2π/3. Heref E(1) andf E(2) denote the two components off E .
After calculations similar to those performed for the symmetry groupC2v, we obtain the

S-matrix in the form

Smp = δmp + iπa(1+ εp + ε2p)

+∞∑
q=0

γq

2

∼
X
(1)A1

mq D[1]
q

[
Jp−q

(
kd√

3

)
+ (−1)qJp+q

(
kd√

3

)]
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+iπa(1+ εp + ε2p)

+∞∑
q=1

∼
X
(1)A2

mq D[1]
q

[
Jp−q

(
kd√

3

)
− (−1)qJp+q

(
kd√

3

)]

+iπa
+∞∑
q=−∞

{(1+ εp−1+ ε2(p−1))
∼
X
(1)E(1)

mq

+(1+ εp+1+ ε2(p+1))
∼
X
(1)E(2)

mq }D[1]
q Jp−q

(
kd√

3

)
(127)

with the coefficients̃X satisfying the following properties

∼
X
(1)A1

mp =
∼
X
(2)A1

mp =
∼
X
(3)A1

mp and
∼
X
(i)A1

m−p =
∼
X
(i)A1

mp (128)

∼
X
(1)A2

mp =
∼
X
(2)A2

mp =
∼
X
(3)A2

mp and
∼
X
(i)A2

m−p = −
∼
X
(i)A2

mp (129)

∼
X
(2)E(1)

mp = ε
∼
X
(1)E(1)

mp and
∼
X
(3)E(1)

mp = ε2
∼
X
(1)E(1)

mp (130)

∼
X
(2)E(2)

mp = ε2
∼
X
(1)E(2)

mp and
∼
X
(3)E(2)

mp = ε
∼
X
(1)E(2)

mp (131)

and solving the following system

C(1)A1
mp = πa

2i

+∞∑
q=0

∼
X
(1)A1

mq

{
δqp − γq

D[1]
q

Dp

[
H
(1)
q−p(kd) cos

π

6
(p − 5q)

+(−1)pH (1)
q+p(kd) cos

π

6
(p + 5q)

]}
(132)

C(1)A2
mp = πa

2i

+∞∑
q=1

∼
X
(1)A2

mq

{
δqp − 2

D[1]
q

Dp

[
H
(1)
q−p(kd) cos

π

6
(p − 5q)

−(−1)pH (1)
q+p(kd) cos

π

6
(p + 5q)

]}
(133)

C
(1)E(1)
mp = πa

2i

+∞∑
q=−∞

∼
X
(1)E(1)

mq

{
δqp − 2

D[1]
q

Dp
H
(1)
q−p(kd) cos

π

6
(p − 5q + 4)

}
(134)

C
(1)E(2)
mp = πa

2i

+∞∑
q=−∞

∼
X
(1)E(2)

mq

{
δqp − 2

D[1]
q

Dp
H
(1)
q−p(kd) cos

π

6
(p − 5q − 4)

}
(135)

where

C(1)A1
mp = −1+ εm + ε2m

6

[
Jm−p(kd/

√
3)

Dp
+ (−1)p

Jm+p(kd/
√

3)

Dp

]
(136)

C(1)A2
mp = −1+ εm + ε2m

6

[
Jm−p(kd/

√
3)

Dp
− (−1)p

Jm+p(kd/
√

3)

Dp

]
(137)

C
(1)E(1)
mp = −1+ εm+1+ ε2(m+1)

3

[
Jm−p(kd/

√
3)

Dp

]
(138)

C
(1)E(2)
mp = −1+ εm−1+ ε2(m−1)

3

[
Jm−p(kd/

√
3)

Dp

]
. (139)
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Table 3. Character table ofC4v .

C4v : E(1) C2
4(1) C4, C

3
4(2) σx, σy(2) σu, σv(2)

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1
E 2 −2 0 0 0

4.4. SymmetryC4v

The symmetry groupC4v is a non-Abelian group of orderg = 8. Its elements areE, C4,
C2, C3

4, σx , σy , σu andσv. E denotes the identity transformation,C4 denotes the operation
of rotation throughπ/2 about the main axisOz of the figure 7(c), C3

4 the rotation through
3π/2 about the same axis,σx , σy , σu andσv the mirror reflections respectively in the planes
Oxz, Oyz,Ouz, andOvz. Five irreducible representations labelled byA1, A2, B1, B2 and
E are associated with this symmetry group.A1, A2, B1 andB2 are one-dimensional, while
E is two-dimensional. Table 3 is the corresponding character table.

Table 3 permits us to split up any functionf given by

f =
+∞∑

p=−∞
fpeipθ (140)

as a sum of functions belonging to the five irreducible representations ofC4v

f = f A1 + f A2 + f B1 + f B2 + f E. (141)

We have

f A1 = 1
8

+∞∑
p=−∞

[1+ (−1)p + ip + i−p](fp + f−p)eipθ (142)

f A2 = 1
8

+∞∑
p=−∞

[1+ (−1)p + ip + i−p](fp − f−p)eipθ (143)

f B1 = 1
8

+∞∑
p=−∞+

[1− (−1)p − ip − i−p](fp + f−p)eipθ (144)

f B2 = 1
8

+∞∑
p=−∞

[1− (−1)p − ip − i−p](fp − f−p)eipθ (145)

f E(1) = 1
4

+∞∑
p=−∞

[1− (−1)p + ip+1− i−p+1]fpeipθ (146)

f E(2) = 1
4

+∞∑
p=−∞

[1− (−1)p − ip+1+ i−p+1]fpeipθ . (147)

Heref E(1) andf E(2) denote the two components off E .
After tedious calculations similar to those done for the symmetriesC2v and C3v, we

obtain theS-matrix in the form

Smp = δmp + iπa(ηp + η3p + η5p + η7p)

+∞∑
q=0

γq

2

∼
X
(1)A1

mq D[1]
q
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×
[
Jp−q

(
kd√

2

)
+ (−1)qJp+q

(
kd√

2

)]
+ iπa(ηp + η3p + η5p + η7p)

×
+∞∑
q=1

∼
X
(1)A2

mq D[1]
q

[
Jp−q

(
kd√

2

)
− (−1)qJp+q

(
kd√

2

)]
+iπa(−ηp + η3p − η5p + η7p)

×
+∞∑
q=1

∼
X
(1)B1

mq D[1]
q

[
Jp−q

(
kd√

2

)
− (−1)qJp+q

(
kd√

2

)]
+iπa(−ηp + η3p − η5p + η7p)

×
+∞∑
q=0

γq

2

∼
X
(1)B2

mq D[1]
q

[
Jp−q

(
kd√

2

)
+ (−1)qJp+q

(
kd√

2

)]

+iπa(−ηp + η3p+2+ η5p − η7p+2)

+∞∑
q=−∞

∼
X
(1)E(1)

mq D[1]
q Jp−q

(
kd√

2

)

+iπa(−ηp − η3p+2+ η5p + η7p+2)

+∞∑
q=−∞

∼
X
(1)E(2)

mq D[1]
q Jp−q

(
kd√

2

)
(148)

whereη = eiπ/4. The coefficients̃X satisfy the following properties

∼
X
(1)A1

mp =
∼
X
(2)A1

mp =
∼
X
(3)A1

mp =
∼
X
(4)A1

mp and
∼
X
(i)A1

m−p =
∼
X
(i)A1

mp (149)

∼
X
(1)A2

mp =
∼
X
(2)A2

mp =
∼
X
(3)A2

mp =
∼
X
(4)A2

mp and
∼
X
(i)A2

m−p = −
∼
X
(i)A2

mp (150)

∼
X
(1)B1

mp = −
∼
X
(2)B1

mp =
∼
X
(3)B1

mp = −
∼
X
(4)B1

mp and
∼
X
(i)B1

m−p = −
∼
X
(i)B1

mp (151)

∼
X
(1)B2

mp = −
∼
X
(2)B2

mp =
∼
X
(3)B2

mp = −
∼
X
(4)B2

mp and
∼
X
(i)B2

m−p =
∼
X
(i)B2

mp (152)

∼
X
(2)E(1)

mp = η2
∼
X
(1)E(1)

mp

∼
X
(3)E(1)

mp = η4
∼
X
(1)E(1)

mp and
∼
X
(4)E(1)

mp = η6
∼
X
(1)E(1)

mp (153)

∼
X
(2)E(2)

mp = η6
∼
X
(1)E(2)

mp

∼
X
(3)E(2)

mp = η4
∼
X
(1)E(2)

mp and
∼
X
(4)E(2)

mp = η2
∼
X
(1)E(2)

mp (154)

and solve the following system

C(1)A1
mp = πa

2i

+∞∑
q=0

∼
X
(1)A1

mq

{
δqp − γq

2

D[1]
q

Dp

[
(−1)q [H(1)

q−p(
√

2kd)+ (−1)pH (1)
q+p(
√

2kd)]

+2(H (1)
q−p(kd) cos

π

4
(3q − p)+ (−1)pH (1)

q+p(kd) cos
π

4
(3q + p))

]}
(155)

C(1)A2
mp = πa

2i

+∞∑
q=1

∼
X
(1)A2

mq

{
δqp −

D[1]
q

Dp

[
(−1)q

[
H
(1)
q−p(
√

2kd)− (−1)pH (1)
q+p(
√

2kd)

]
+2(H (1)

q−p(kd) cos
π

4
(3q − p)− (−1)pH (1)

q+p(kd) cos
π

4
(3q + p))

]}
(156)

C(1)B1
mp = πa

2i

+∞∑
q=1

∼
X
(1)B1

mq

{
δqp +

D[1]
q

Dp

[
− (−1)q

[
H
(1)
q−p(
√

2kd)− (−1)pH (1)
q+p(
√

2kd)

]
+2(H (1)

q−p(kd) cos
π

4
(3q − p)− (−1)pH (1)

q+p(kd) cos
π

4
(3q + p))

]}
(157)
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C(1)B2
mp = πa

2i

+∞∑
q=0

∼
X
(1)B2

mq

{
δqp + γq

2

D[1]
q

Dp

[
− (−1)q

[
H
(1)
q−p(
√

2kd)+ (−1)pH (1)
q+p(
√

2kd)

]
+2(H (1)

q−p(kd) cos
π

4
(3q − p)+ (−1)pH (1)

q+p(kd) cos
π

4
(3q + p))

]}
(158)

C
(1)E(1)
mp = πa

2i

+∞∑
q=−∞

∼
X
(1)E(1)

mq

×
{
δqp +

D[1]
q

Dp

[
(−1)qH (1)

q−p(
√

2kd)− 2 sin
π

4
(3q − p)H(1)

q−p(kd)
]}

(159)

C
(1)E(2)
mp = πa

2i

+∞∑
q=−∞

∼
X
(1)E(2)

mq

×
{
δqp −

D[1]
q

Dp

[
(−1)qH (1)

q−p(
√

2kd)− 2 sin
π

4
(3q − p)H(1)

q−p(kd)
]}

(160)

where

C(1)A1
mp = −η

m + η3m + η5m + η7m

8

[
Jm−p(kd/

√
2)

Dp
+ (−1)p

Jm+p(kd/
√

2)

Dp

]
(161)

C(1)A2
mp = −η

m + η3m + η5m + η7m

8

[
Jm−p(kd/

√
2)

Dp
− (−1)p

Jm+p(kd/
√

2)

Dp

]
(162)

C(1)B1
mp = −η

m − η3m + η5m − η7m

8

[
Jm−p(kd/

√
2)

Dp
− (−1)p

Jm+p(kd/
√

2)

Dp

]
(163)

C(1)B2
mp = −η

m − η3m + η5m − η7m

8

[
Jm−p(kd/2)

Dp
+ (−1)p

Jm+p(kd/2)
Dp

]
(164)

C
(1)E(1)
mp = −η

m + η3m+2− η5m − η7m+2

4

[
Jm−p(kd/

√
2)

Dp

]
(165)

C
(1)E(2)
mp = −η

m − η3m+2− η5m + η7m+2

4

[
Jm−p(kd/

√
2)

Dp

]
. (166)

5. Conclusion and perspectives

In this paper, we have developed an exact formalism to calculate theS-matrix valid for
various realistic problems of physics. Since theN -disc system is one of the paradigmatic
models in the field of chaotic scattering, we hope that the present work will be useful in this
context. In the second part of this work [25], we shall complete our study by emphasizing
the physical aspects linked to the scattering resonances of the two- and three-disc systems.

6. Appendix. Unitarity and reciprocity of the S-matrix

In this short appendix, the properties of theS-matrix (unitarity and reciprocity [26]) are
linked to the properties of the coefficients defining the partial waves and their gradients on
the boundaries of the discs. Unitarity is associated with energy conservation in acoustics
and electromagnetism, and with particle number conservation in quantum mechanics.
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Reciprocity is associated with time-reversal invariance in acoustics, electromagnetism, as
well as in quantum mechanics.

Green’s theorem (equation (7)) considered forg = φm1 andf = φ∗m2
reads

0=
∫
∂D∞

dSx · [φm1(x)∇xφ
∗
m2
(x)− φ∗m2

(x)∇xφm1(x)]

+
N∑
i=1

∫
∂Di

dSx · [φm1(x)∇xφ
∗
m2
(x)− φ∗m2

(x)∇xφm1(x)] (A.1)

sinceφm1 andφ∗m2
are solutions of the Helmholtz equation. From the asymptotic behaviour

of the partial waves (equation (4)), we easily find the integral over∂D∞∫
∂D∞

dSx · [φm1(x)∇xφ
∗
m2
(x)− φ∗m2

(x)∇xφm1(x)] = 2i

[
δm1m2 −

+∞∑
p=−∞

Sm1pS
∗
m2p

]
. (A.2)

From the general boundary conditions given by equations (2) and (3), we obtain for the
integral over∂Di∫
∂Di

dSx · [φm1(x)∇xφ
∗
m2
(x)− φ∗m2

(x)∇xφm1(x)] = 2πa
+∞∑

p=−∞
[A(i)m1p

B(i)∗m2p
− A(i)∗m2p

B(i)m1p
].

(A.3)

Therefore, we finally find that

+∞∑
p=−∞

Sm1pS
∗
m2p
= δm1m2 − iπa

N∑
i=1

+∞∑
p=−∞

[A(i)m1p
B(i)∗m2p

− A(i)∗m2p
B(i)m1p

] (A.4)

which can be written in matrix notation

SS† = I − iπa
N∑
i=1

[A(i)B†(i) − B(i)A†(i)]. (A.5)

So, under the condition
N∑
i=1

[A(i)B†(i) − B(i)A†(i)] = 0 (A.6)

the S-matrix is unitary. It should be noted that such a condition is not always satisfied
for the boundary conditions examined in section 3. For example in electromagnetism, for
metallic conductors with a given constant impedanceZ, energy conservation is not satisfied
because of the Joule effect, so thatS is not unitary.

Green’s theorem (equation (7)) considered forg = φm1 andf = φm2 reads

0=
∫
∂D∞

dSx · [φm1(x)∇xφm2(x)− φm2(x)∇xφm1(x)]

+
N∑
i=1

∫
∂Di

dSx · [φm1(x)∇xφm2(x)− φm2(x)∇xφm1(x)]. (A.7)

From the asymptotic behaviour of the partial waves (equation (4)), we easily find the integral
over ∂D∞∫
∂D∞

dSx ·
[
φm1(x)∇xφm2(x

′)− φm2(x)∇xφm1(x)
]

(A.8)

= 2i
[
(−1)m1Sm2−m1 − (−1)m2Sm1−m2

]
.
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From the general boundary conditions given by equations (2) and (3), we obtain for the
integral over∂Di∫
∂Di

dSx · [φm1(x)∇xφ
∗
m2
(x′)− φ∗m2

(x)∇xφm1(x)]

= 2πa
+∞∑

p=−∞
[A(i)m1p

B
(i)
m2−p − A(i)m2p

B
(i)
m1−p]. (A.9)

We finally find that

Sm1−m2 = (−1)m1+m2Sm2−m1 − iπa
N∑
i=1

+∞∑
p=−∞

(−1)m2[A(i)m1p
B
(i)
m2−p − A(i)m2p

B
(i)
m1−p]. (A.10)

So, under the condition
N∑
i=1

+∞∑
p=−∞

(−1)m2[A(i)m1p
B
(i)
m2−p − A(i)m2p

B
(i)
m1−p] = 0 (A.11)

the S-matrix satisfies the reciprocity property

Sm1−m2 = (−1)m1+m2Sm2−m1. (A.12)

It should be noted that such a property is not always satisfied for the boundary conditions
examined in section 3. Indeed, if the scatterer is absorptive, there is no time-reversal
invariance.
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