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Abstract. Scattering of waves and particles frashdiscs fixed in a plane is studied. Various
boundary conditions on the scatterers, corresponding to mesoscopic quantum physics, acoustics
or electromagnetism, are considered. An exact formalism allowing us to calculaSentiagrix,

its scattering resonances and far-field form functions is developed for systems with discrete
Cay, C3y andCy, symmetries. It extends the Korringa—Kohn—Rostoker method developed in the
context of solid state physics and generalizes the works of Berry and of Gaspard and Rice in
quantum chaos.

1. Introduction

Recently, scattering of a point particle frold hard discs fixed in a plane has been
extensively studied in the context of ‘quantum chaos’. For reviews on the subject, see [1-4]
and for some recent papers, see [5-10]. In these works, the exact calculations are performed
from the S-matrix formalism developed by Gaspard and Rice [11]. These two authors have
presented the exact quantum mechanics of the scattering of a point particle from a three-disc
scatterer by emphasizing the role of the symmetries of the system. Their method is inspired
by the work of Berry on the quantization of a bounded classically chaotic system [12].
Berry’'s quantum formalism was based on the Korringa—Kohn—Rostoker (KKR) method
developed in the context of solid state physics [13-15]. In the perspective of the study of
chaotic scattering in more realistic problems such as scattering of waves in acoustics or
electromagnetism and of particles in mesoscopic quantum physics, it is useful to generalize
the Gaspard and Rice approach. In such situations, it will be possible and interesting to
experimentally confirm the theoretical results and the new physical effects expected.

In this paper, we are concerned with scatteringh\bgiscs presenting various boundary
conditions. In section 2, th&-matrix is defined and obtained from two sets of coefficients
defining the partial waves and their gradients on the boundaries oV ttscs. Then we
construct the associated far-field form functions. In section 3, we consider some particular
boundary conditions:

—Dirichlet boundary condition in quantum mechanics, in acoustics and in
electromagnetism (particle scattering by hard discs [1-11], ultrasonic wave scattering by
soft discs and microwave scattering by metallic conductors [16]),
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Figure 1. N-discs system geometry: various coordinates for an arbitrary point M.

—Neumann boundary condition in acoustics (ultrasonic wave scattering by hard discs),
—impedance boundary conditions in electromagnetism (transverse magnetic (TM) and
transverse electric (TE) scattering by conductors with a given constant impedance),
—mixed boundary conditions in quantum mechanics (particle scattering by a square
well and by a square barrier in the ‘overdense’ and ‘underdense’ cases),
—elastic boundary conditions in acoustics (ultrasonic wave scattering by elastic
cylinders immersed in water).
In section 4, we examine special configurations presenting disd@gte Cs, and
Cq symmetries. The Korringa—Kohn—Rostoker—Berry (KKRB) method permits us to
easily integrate symmetry considerations and to expandSth&atrix on the irreducible
representations of symmetry groups [11-17]. In a short appendix, the properties of the
S-matrix (unitarity and reciprocity) are linked to the properties of the coefficients defining
the partial waves and their gradients on the boundaries of the discs.

2. S-matrix: general theory

2.1. Geometry of th&/-discs system. Definition of ttematrix

We consider a set a¥ identical and parallel cylinders of radias Cylinders are parallel to
the Oz axis so that the system can be seen as a sat wbn-overlapping discs in the plane
Oxy. The geometry of the system as well as the notations used are shown in figure 1. In
particular, we denot®; the centre of scatteregr (r;, 6;) the system of polar coordinates
centred onO; and(r, 9) the system centred oft. Furthermorey; is the distance) O;, r;
the distance0; O;, ¢; the angle betwee®x and O O;, and¢;; the angle betwee®x and
0;0;.

We consider the partial wave solutigr), of the following problem:

() ¢, satisfies the Helmholtz equation (or time-independent @tthger equation)

(A + k2)¢m =0 (l)



ExactS-matrix for N-disc systems: | 7867

where A is the two-dimensional Laplacian,
(i) ¢, and its gradienV ¢,, are given on the boundaries of thé discs by

+00

i) = 3 Ay o
p=—00
+00 o
n; - Vo, (x) = Z Br(ril))eIPGi(m) -

p=—00

where A$) and Bf}) are two sets of unknown matrices, is an arbitrary point on the
boundary of disa, n; is a unit normal vector directed into digcat the pointz and6;(x)
the angular coordinate of the poimt

(i) at large distanceg,, has the asymptotic behaviour

1 +00 ) ) )

¢m (r’ 9) ~ 2 e—l(kr—pn/Z—n/4)8m + el(kr—[m/Z—r[/4) Sm elpG. 4
r—00 27'[](7' pzfoo[ P P] ( )

The last equation defines the elemesits of the S-matrix [18].

The far-field form function is expressible directly in terms of $¥natrix and is given
by [11]

+00 +00

1 o o
Jolb) = —== ) ) e Sy — b (5)
m=—00 p=—00

wherea and 6 respectively denote the angles of incidence and observation. We shall be
equally interested in the total scattering cross section averaged over all the arayid®
and given by

4 +00 +00 )
Etot = % Z Z |Smp _Smp| . (6)

m=—00 p=—00

2.2. Calculation of thes-matrix. Extension of the KKRB method

2.2.1. The KKRB method.Let us consider an arbitrary closed domadinof the plane and
its boundaryd D. Green’s theorem (see for example [19])

[ avirag-ean=[ ds-(rve-gvi) @)
D aD
taking for g the partial wavep,, and f the free space Green’s function
i
G, x) = ZH(;D(W — /) (8)

which satisfieS A, + k)G (x, ') = —8(x — '), permits us to express, (x) in terms of
the values ofp,, and G, on the boundary D. We obtain

¢m (CB) = /;D dSw’ * [Gk(wv x/)vz’¢n1 (w/) - ¢m (:L'/)V:L"Gk(wa ib/)] (9)

where &5, denotes the surface element pointing away from the interior of the domain
In the following, we shall use the particular contdud shown in figure 2 and defined by

9D = 3Dy U (LNJ 3D,~> (10)

i=1
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Domain [,

Figure 2. Domain D and its boundary D.

whered D, is a circle at large distance from theé-discs system andD; is one circle
centred on dis¢ but a little larger than the disc itself.

We use equation (9) in two steps:

—first, we choose for the extremity of the vectoera point belonging to the surface of
a scatterer and we calculate the line integral avBr We thus obtain an equation linking
the two sets of coefficientd|;) and B!,

—then, we choose for the extremity of the vectoma point belonging to the domain
D at large distance from the system composed byNhdiscs. We then express the matrix
elementss,,, in terms of the two sets of coefficients;) and Bf,).

The reader who simply wishes to calculate thenatrix and is not especially interested
in following the derivation can directly use equation (37)—(42) and (54)—(56).

2.2.2. First step:x belongs to the surface of scatterigr In this part of the studygx lies
on the surface of scattergy. Becauser does not belong to the domaip, ¢,,(x) = 0, and
equation (9) reads
j=N
0=Io@) + L@ + Y L@ (11)
J=1(j#io)

with I (z) the integral ovel D, I;,(x) the integral oven D
0D; defined by

and J;(x) the one over

ior

oo () = dSy - [Gi(x, )V dn(x) — (@) Vo Gr(z, )] (12)
0Dw

Ly (z) =/a dSe - [Gi(@, &) V(@) — du (@) Vo Gi(z, )] (13)
Dy
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Ij(x) =/ dSy + [Gi(@, )V du(@) — ¢ (x) Vo Gi(z, )] (14)
aD,

We first evaluate the line integral at large distanggx). In this casex = (r,0)
belongs todD;, andz’ = (+/,0’) to 0D, so thatr’ > r. Consequently, from Graf's
theorem [20],G;(x, ') can be written in the form

. 400
Gl @) =7 Y. Jpter) HO G (15)

p=—00

[ 2 ..
ngl) (kr/) r/:oo — e|(l<r —pn/2—rr/4). (16)

Therefore we have

with

/ / H A 1

n - Vm/Gk(.’B, x) =1kGi(x, ") + O oo (W) (17)
wheren/’ is an unit vector normal té D.,. Furthermore, from equation (4), we obtain

Ipm () . 1 ik —m )27 /A) mb 1
— ik - N — —2ik i(kr'—mm /2 J'[/4)e|m9 Or’—)oo ) 18
o kon(@) = —o==(=2ike + ITOED (18)

We finally find

Loo(x) = J,, (kr)e™. (19)

I (x) has been expressed in terms of the coordinate®) of x. In order to express it
in terms of the coordinates centred on scattégefsee figure 3), we use Graf's addition
theorem [19]

+00
T (k)@@= = N g (ksip) T, (ka) &P 0ot (20)

p=—00

and we obtain

+00
Lo (z) = "0 Z I p(ksip) J, (ka)eP@oto), (21)

p=—00

We then evaluate the line integra)(z). We can writel;,(z) = I\ (x) — Il.f)z) (x) with

1@ = [ 4, - [6u(e.2) V(@) (e2)
aD,

i0
and
19 () = / 48, - [9 @)V Gy (. ). (23)
aD;,
As far as the calculation Oli(ol)(a:) is concerned, we directly obtain
@ iTa XN (io) @ i p6;
I @) === 3 BygJytka)H;P (ka)e?"o (24)

mp
p=—00

by expressings (x, ') in the coordinate systerfO;,xy). The calculation oflif)(w) is not
so obvious because it is only at the end of the calculation that we shall take the limit in
which 9 D;, tends to the boundary of disgg (see figure 4).
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Figure 3. From the coordinate syste(, 6) to the coordinate systeitt;, = a, 6;,).

disc io

Figure 4. Discip and its boundary.

We also expressi(x, ') in the coordinate systerfD,,xy). We have

i +00 . ' ,
Gi@.a) =5 Y Jpka) B (hr) e o~ (25)
p=—00
so that
Ik +00 . ,
n’-erGk(w,w/):—Z > Jyka)HY (ka)e? %o~ (26)

p=—00
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We then obtain
19@) =~ Y LA 1 (k) HY (k) 27
,-O(fv)——T mp Ip(ka)H,™ (ka) . (27)
p=—00
Thus, the line integral;,(x) is given by
ita X - 4 .
Li(z) = - T, (ka)e""o[BY HP (ka) + kAL HY (ka)]. (28)
p=—00
We finally evaluate the integralg(z) for j # io. We havel;(z) = I/Y(z) — I/ (x)
with

1@ = [ 48, [6i@. @) Vo, @) (29)
and /
12 (@) = /d ) dSy - [pm (@) Vo Gi(x, z)]. (30)
As far as the calculation cﬁj(l)(a:) is concerned, we directly obtain
) iTa ¥R . 1 i
[P@) == ) BiJy(ka)HP(krje" (31)
p=—oc

by expressingG,(x, ') in the coordinate systerfO;xy). In this casezx still belongs to
the boundary of disg, but nowa’ lies ondD; (see figure 5)J-I]§1>(kr,) can be expressed
in the coordinate systertr,,, 6;,) by using Graf's theorem

+00
H (kry)@r o= = 3" HO (kriyj)Jy (ka)@1e o+t (32)

g=—00

We then obtain

i +o0o 400 ) ) )

1P (@) = % Y > BU I, (ka),(ka)HY  (kriy )€ =P o (33)

p=—00 g=—00
The calculation off?(z) is similar to that of/¥ (z). From the relation

ik X . /
nj VaGi(z, @) == 3 J,(ka)HP (kr))e? =% (34)
p=—00

we obtain
@ iJTLl +o0 +00 o @ ) -
[j7(x) = —— >0 >0 kAU I, (ka)J,(ka)H,Y , (kriy;) €9 %0 g (35)

p=—00g=—00

Finally, from equations (33) and (35), we have

iTa & X N A -
I(@) = = >N elamrnotrtol pkayHyY (ki [ BY) Ty (ka) + kA T, (ka)].
pP=—00g=—00
(36)
By combining equations (21), (28) and (36), in equation (11), we find
N +oo
CH =" S {BOMY + AYNID 37)

j=1g=—00
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Figure 5. From the coordinate syste(w;, 6;) to the coordinate systerr;,, (9,-0).
where
B\) = B{)é1% and A{]) =kA(])e4? (38)
and
cH — dméi Im—p (Ksi) 39
mp Q) . ( )
HY (ka)

Here the matrices/.’ and N/’ are given by

iy _ T4 oy k)
My, = 2i {8qp81]+ Hp(l)(ka)Hq—p(krt./)él.l(P’Q) (40)
N HWY (ka) J (ka)
ih - T4 ) e i — L HD (k)i (
= = i Zpkrij)éij(p, q) (41)
LT { HP(ka) " H kay 7

with
0 ifi—
5 (P-4) = poi-0 a0 if i £ . (42)

2.2.3. Second stepr is at a large distance from th&/-disc scatterer inside domaim.
Now we chooser at a large distance from th¥-disc scatterer and inside domaih, so
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thate,, (x) is given by its asymptotic behaviour in equation (4). So, in this case, equation (9)
reads

N
Joo(w)+zjl(m) — Z [e i(kr—pm/2— 7r/4)6 +el(kr pr/2— 7'[/4)5 ]eIPé) (43)
i=1

with
Joo () = /BD dSy - [Gi(@, )V () — () Vo Gr(m, )] (44)
and :

Ji(z) = / dSy - [Gi(x, )V (@) — ¢ () Vo Gi(x, x)]. (45)
aD;

We first evaluate the line integrdl, () at large distance. It should be noted that r’.
Indeedr’ is on the boundary D, while r, which is far from the diffusors, still remains
inside domainD. Consequently, the calculation df,(x) is the same that the calculation
of I.(x) performed in section 2.2.2. We have

Joo(@) = Jy (kr)e™. (46)
Moreover, since: tends to infinity,J..(x) is given by

1 400 ) ) )
~ § efl(krfmn/an/4)8m + el(krfmr[/an/4)6m eIpO ) 47
r—00 2mkr p=—oo[ P p] ( )

We then evaluate the line integrgl(x). We can write

Joo ()

i@ = I @) - 12 @) )
with

IO (@) :/ dSy - [Gi(z, )V du ()] “49)
and B

1 (@) = /d ) dS, - [bn (@) Ve G (x, 2)]. (50)

In order to evaluate]im (x), we first expres$G(x, ') in the coordinate systertr;, 6;).
Then, by using Graf’s addition theorem (see figure 6), we exfFgés, ') in the coordinate
system(r, 6).

As a consequence, we obtain
+00 +00
> > B @ I, (ka)yHP (kr) g (ksi)e? =% (51)

p=—00 g=—00

Ta

J<1>( )_'2

. ™ . T . . .
In this case,H,” (kr) is still given by its asymptotic expansion for large arguments

(equation (16)). In order to calculatéz)(m), we still expressGy(x, ') in the coordinate

system(r;, 6;), so that the gradient is still given by equation (34). Thus, we obtain
Irra +oo  +00

JP(x) = Z > kA €99 ) (ka)HSY (kr)J, g (ks;) €% (52)

p=—00g=—00
Finally, from equations (51) and (52), we find

Ina =

Ji(x) = Z Z H® (kr)J,—q (ks;)€PO9€1% [BY) 1, (ka) + kAL J (ka)]  (53)

mq
—00 g=—00
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Figure 6. From the coordinate systetw;, 6;) to the coordinate systertr, 0).

with HP (kr) given by its asymptotic expansion for large arguments.
Introducing the results established in equations (47) and (53) in equation (43), we obtain

N 400
Sup =y 13 3 (BYDLY + AN EY) )
R
where the matrix elements};, and BY, are given by equation (38) and the matrides)
5
and Eg, by

Df{Q = wae P Jp—q(ks;)Jq(ka) 59)
and

Eé{)) = wae "% Jo—q (ij)J(; (ka). (56)

3. Study of some particular boundary conditions

3.1. Dirichlet boundary condition

In qguantum mechanics, when we study the particle scattering by hard discs, a Dirichlet
boundary condition must be satisfied by the wavefunction [1-12]. In acoustics, it also
must be satisfied by the pressure field describing ultrasonic wave scattering by soft discs.
Similarly, in electromagnetism and more particularly in the study of microwave scattering by
perfect metallic conductors [16], this boundary condition must be satisfied by the transverse
component of the electric field. In all those cases, the partial waxe) vanishes on the
boundaries of thev discs, so

AD —0fori=1,...,N. (57)

mp
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In contrast, the gradient of the partial wagg (x) is defined by the unknown coefficients
B,Sf; given by equation (3). Consequently, tRanatrix given by equation (54) reduces to

N  too ) )
Sup =8mp +1Y_ Y BYDY). (58)
j=1g=—

Here D)) is given by equation (55) and the coefficienss;, are determined from
equation (37) by

ch) =

N 40
j=1

Z B M(iD (59)

q=

with C») and M are given by equations (39) and (40).

3.2. Neumann boundary condition

In acoustics, the pressure field describing ultrasonic wave scattering by hard discs satisfies a
Neumann boundary condition. In that case, the gradient of the partial #jaw® vanishes
on the boundaries of th# discs, thus

B =0  fori=1... N. (60)

Now, the partial waveg, (x) is defined by the unknown coefficientd?) given by

mp

equation (2). Consequently, ttfematrix given by equation (54) reduces to

()

Swp = Smp +|Z Z Aqu;;} (61)

j=1g=—

~(J)
Here Eéﬁ,) is given by equation (56) and the coefficients,, are determined from

equation (37) by

with C{)) and N, are given by equations (39) and (41).

3.3. Impedance boundary conditions

In electromagnetism and more particularly in the study of microwave scattering by metallic
conductors with a given constant impedartethe impedance boundary condition must be
satisfied by the transverse components of the electric and magnetic fields. More precisely,
the partial wavep,, (x) and its gradient are linked on the boundaries of hdiscs by (see

for example [21])

Br,
For TM-waves,; = Z, while for TE-waves; = 1/Z. We then obtain
~(l) ~ (i)
B,,=IitA,, fori=1,...,N.

Consequently, thé—matrlx given by equation (54) reduces to

N  +00  _()) ) )
Sup =8mp +1Y_ Y A, [itDY) + ED]. (63)

j=1g=—00



7876 Y Decanini et al

Here D)) and E})) are respectively given by equations (55) and (56) and the coefficients
~()
A,,, are determined from the following system
. N oIX o~ . o
Cin =2 D AnglitM) + N1 (64)

j=1lg=—00

with ¢ M and N are respectively given by equations (39)—(41).

mp?

3.4. Mixed boundary conditions

Such boundary conditions occur in quantum mechanics for the wavefunction describing
particle scattering by a square well and by a square barrier in the ‘overdense’ and
‘underdense’ cases. In that case, equation (1) is the time-independeatiBger equation
and the corresponding potentielr) vanishes outside the discs and is constant inside each
disc where it takes the valug. We denote byE > 0 the total energy of the incident
particle. Then the wavenumbers outside and inside the discs are respectively given by
k = (1/h)~/2mE andk’ = nk with the refraction index = /1 — Vp/E.

The expression of the inner wavefunction in each disan be written in the form

+00
b= > T, kr)er” (65)
p=—00

m
A and B{}) by using the continuity of the wavefunction and its normal derivative on the
boundaries of thev discs. We obtain

where theo“?, are a set of unknown coefficients which can be linked to the coefficients

AL =) I, (K a) (66)
0 _ o) g

B,, = —kc,,J,(K'a). (67)

We then find that th&-matrix is given by
N 400 ) )
Sup =8mp +1Y_ Y ENFD (68)
j=1g=—00

with

FO =mae™ 7% J,_, (ks;) DM (69)
and the coefficientsy)) = c\/)é4% are the solution of the following system (equation (37))

N +00
O =) pg D)
Cmp - Z Z cn{qul; (70)
j=1g=—00
with
i j Jm— k i
C’% — _gmei ﬁ (71)
D[’
iy T4 D
Méﬁ) =3 {841951'1' - D_qufp(krij)";:ij(ps q) (- (72)
4

The coefficientsD!Yl and D, are 2x 2 determinants which take into account the boundary

conditions and are given by

pll _ |kJgka) K J;(K'a)
a Jytka)  J,(K'a)

12y 1yl
kHY (ka) K J/(Ka)

. 73
H,(,l) (ka) Jy(k'a) (73)

andD, = —‘
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3.5. Elastic boundary conditions

Elastic boundary conditions occur in acoustics in the study of ultrasonic wave scattering by
elastic cylinders immersed in water or in a perfect fluid. In that case, the determination of the
coefficientsAf,’;}, and Bf,i}, is more complicated: it involves the scalar and vector potentials
associated respectively with compressional and shear waves [22] and it is necessary to write,
at the surface of each cylinder, the continuity of the radial component of displacement and
of the normal component of the stress tensor. After tedious calculations, one finds [23]

N +00
Sup =8mp +1Y_ Y aNGH (74)
j=1g=—00
with
GU) = mae 7% J,_, (ks;) DM (75)

The coefficientsi,ﬁig, which define the vector displacement potential of cylingleare the

solution of

N +00
ch=3 5 atmy 2
j=1g=—00
with
i i Jm—) k i
c) = —gnis Inp®s) (77)
D,
(1
ij Ta D 1)
M) = o {5qp5ij - D—qH;_p(krij)Eij(P, 4)} : (78)
P

Here DI and D are the usual & 3 determinants defining the scattering wave by only one
cylinder and which take into account the boundary conditions [24]. They are given by

—(krd)qu/(ka) diz di3
DM = | (p'/p)kal,(ka) dap dos (79)
0 dz> ds3
—(kra)*H{ (ka) d1z di3
Dy =—|(p'/p)kaHV (ka) dap d23 (80)
0 d3p d33
with
d1o = [(kra)® — 2¢°)J, (kpa) + 2kpal, (k ) (81)
dop = —kal,(k.a) (82)
dsp = 2qlk al,(kpa) — Jy(k a)] (83)
dis = 2q[x7J, (kra) — J,(kra)] (84)
doz = qJ,(kra) (85)
ds3 = [(kra)® — 2¢°]J, (kra) + 2%kra ) (kra). (86)

Herek is the wavenumber in the fluid medium linked to the velocityf sound byk = w/c

(w denotes the angular frequency of the incident wave), and ky are respectively

the wavenumbers associated with compressional and shear waves propagating inside the
cylinders. They are linked to the velocities andc; of compressional and shear waves by

k; = w/c; andkr = w/cy. Furthermore, and p’ denote respectively the density of the

fluid and that of the scatterers.
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3.6. Summary

It is easy to show that, for all the boundary conditions studied aboveStmatrix is
expressible in the form
N &~

Sup = Smp +1 Z Z X, EY) (87)

j=1g=—00

~()
where the unknown coefficienf§ are deduced from the following system

. N ot ()
Cop =22 2 XMy (88)
j=1g=—00
with the matricesC, M and E given by
i 1 Jmf k i
C'Si[)) = —e|m¢i g( S ) (89)
)4
" ma pil
Mé',{) =9 8qpij — D_qu(l—)p(k"ij)&j(P, 4)} (90)
P
E%) =wae "], , (ksj)Dgll. (91)

Here DY and D are determinants taking into account the boundary conditions. For a
Dirichlet boundary condition, one writes

DM = J, (ka) (92)

D, = —HP (ka). (93)
For a Neumann boundary condition, we have

DM = J/ (ka) (94)

D, = —H" (ka). (95)

For impedance boundary condition8!*! and D read
DM = J (ka) + ¢ J,(ka)
Dy = —(HY (ka) + it HP (ka)).

For mixed boundary conditions, the determinamg%] and D, are expressed in equations
(73). And for elastic boundary conditions, they are expressed in equations (79) and (80).
In matrix notation, equations (87) and (88) become

S=1+iXE (96)
and

C=XM. (97)
Thus we can write

S=I1+iCM'E. (98)

Consequently, the poles of ttlfematrix, which are intrinsic to the scatterer, appear through
the inversion of the matriX/. The scattering resonances are thus the complex zeros of the
characteristic determinant

detM (ka) =0 (99)
in the complexka-plane.
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N u oA
Disc 1 .
Disc 2
T <> [ D ~ Disc 1
| & I VA W
| A X
| -~

-
f:\\ ’
\_/ o

< Y
\

Disc 2 Disc 3
(a) v (b)

Figure 7. (a) SymmetryCy,. (b) SymmetryCs,. (c) SymmetryCs,.

4. Symmetry considerations

4.1. General aspects

In what follows, we shall study three different configurations presenting symmetry properties
(figure 7):

—the two-disc scatterer. This system is invariant under the symmetry gkup/iVe
denote byd the separation distance between the centres of the scatterers,

—the three-disc scatterer. The centres of the discs are located at the vertices of an
equilateral triangle of sidé. The three-disc system is invariant under the symmetry group
C3‘U1

—the four-disc scatterer. The centres of the discs are located at the vertices of a square
of sided. This system is invariant under the symmetry grayp

In these three cases, symmetry properties of the scatterers permit us to simplify the
formalism of sections 2 and 3. Indeed it is possible to expand the partial gyaueterms
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Table 1. Character table of>,.

Coyp - E C2 o oy

Ag 1 1 1 1
Az 1 1 -1 -1
B 1 -1 1 -1
B> 1 -1 -1 1

of the irreducible representations of the symmetry groups. Let us consider a finite symmetry
group G of orderg. This group is made up of the geometric transformatigrieaving the
system invariant. We denote Bythe set of the:, -dimensional irreducible representations

y associated withG. We can write [17]

ny

¢m = Z (¢m),§y) (100)
yel i=1
with
@) = "L 5" DV (R)(Orpm) (101)
ReG

where O denotes the linear operators associated with the transformakiaishe group
G. Dl.(iy (R) represent the diagonal elements (or characters) of the representative Phatrix
of the symmetry group in the representatipn

In the following, we shall split equations (96) and (97) over the different representations
of the symmetry group considered. Thus, we solve the problem described by equations (1)—
(4) for the componentg,,)”’ of the partial wave.

4.2. Symmetr¢,,

The transformations of the symmetry grodp, of orderg = 4 areE, C», o, ando,. E
denotes the identity transformatio@, the rotation throughr about the main axi®z of
figure 7@), o, ando, the mirror reflections in the two plane@3xz and Oyz. Four one-
dimensional irreducible representations labelledday A,, By, B, are associated with this
symmetry group. Table 1 is the corresponding character table.

The character table permits us to split up any functfogiven by

+00
f=> e (102)
p=—00
as a sum of functions belonging to the four irreducible representatio@s, of
f=fhr et i pt (103)
We have
+00 )
=3 3 [+ DI, + foper (104)
p=—00
+00 )
f2=5 > [+ DS, — foper (105)
p=—00
+00 )
=5 = DAL, + fope?” (106)

p=—00
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+00 )
=i D [1— DS — fper.

p=—00

7881

(107)

We deduce from the previous equations the asymptotic behaviouy, dh the different
representations and, as a consequence, the expresiit,i}j gfven in equation (89) in each
representation. So, we obtain

cwa _ _MAIT"
" 4
cWap _ A"
mp 4
ws _ "
chB = _
4
DB jm _—jm T
2 —
Cp i = 7

_Jmfp(kd/z) _ Jm+p(kd/2)_
DP - ( 1)p DP .
Inp®kd/2) sy I Kd/2)]
D[’ D[’ .
Inpkd/D) o Iy K/
DP DP -
Jm—p(kd/z) _ Jm+p (kd/Z) i
Dl’ * ( 1)p D[’

(108)

(109)

(110)

(111)

Now, we would like to split equation (97) in the four representatidnsA,, B1, B>.
In each representation, the unknown coefficiexitd respectively satisfy

~MAL ~ @A ~)AL ~ ()AL
Xpp =X and mep = Xop (112)
~ DAy ~(2Az ~ (i)Az ~ (i)Az
mp = me and Xm—p = _me (113)
~ (1B ~ (@B ~ (i)B1 ~()By
mp = —Xomp and Xy =X (114)
~ B, ~ @B, ~)B  ~()B
mp = —Xpp and mep = Xpp - (115)
We finally deduce
+00 L (1)Ay pil
ma 7
Co' = Sr > Xy 180 — S Dq [H?,(kd) + (— 1)PH;EP(kd)]} (116)
=0
W, _ T P DM p @
=% > Xy 18— (=D S [HZ, (kd) = (=17 HE (k)] (117)
g=1 p
s, _ T4~y P DI ) @
Cop + = o Xy %p + (_1)qD_[H‘1_p(kd) — (—1)”Hq+p(kd)] (118)
q=1 P
T (1B pil
Ta 7
Con'™ =50 D2 Xy V0ap + (D75 Dq [H?,(kd) + (— 1)PH;£p(kd)]} : (119)
q=0

Similarly, from the asymptotic behaviour @f, in the different representations and from
the properties (112)—(115) of the unknown coefficiektd’, we determine the expression
of the S-matrix in each representation. By combining all those results, we obtain

kd kd
o[ (3) + (3]

XX A kd kd
s SR () - o ()]

¥, ~ (DA
Smp - Smp Iﬂa(lp + |_p) Z ‘I mq

+ima(i? +
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Table 2. Character table of3,.

Ca: ED) C3,C22 0y,0u,0003

Aq 1 1 1
Ao 1 1 -1
E 2 -1 0
o IR ~OB kd kd
s = 5 [ ()~ ()
q=1

Xy, LB kd kd
Hima(i? —i7) )y ”—qumq piY [J,,_q <7> + (=1 Jpy <?>] . (120)
q=0

4.3. Symmetr¢s,

The symmetry grouggs, is a non-Abelian group of ordes = 6. Its elements ar&, Cs,
C§, 0., 0, ando,. E denotes the identity transformatiofiz the rotation through 2/3
about the main axi®)z of figure 7b), C3 the rotation through #/3 about the same axis,
oy, 0, ando, the mirror reflections respectively in the plan@sz, Ouz and Ovz. Three
irreducible representations labelled By, A,, E are associated with this symmetry group.
A1 and A, are one-dimensional, whilg is two-dimensional. Table 2 is the corresponding
character table.

Table 2 permits us to split up any functighgiven by

+0o0
f=Y fer (121)

p=—00

as a sum of functions belonging to the three irreducible representatiafys of

f=f e fr (122)
We have
+00
Fa=F Y A N+ e (123)
p=—00
+oo .
flr=13 e + €IS, — £ (124)
p=—00
+00 .
fE‘l‘ — % Z [1+6p+1 +62(p+1)]fpelp9 (125)
p=—00
+00 )
fPo =3 3 [L+er 42V f,er (126)
p=—00

wheree = €27/3, Here ff» and ff@ denote the two components ¢f .
After calculations similar to those performed for the symmetry grégpwe obtain the
S-matrix in the form

2Ry O kd kd
_ i Ya [l
Spp = Om +|7m(1—|—6”+62”)§ X,, D [] _ ( >+(—1)”J ( )]
P i e S R WV "\ V3
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_ oo AR DAz kd kd
+imra(l+ el + €°P) meq DM [J,,_q <ﬁ> —(=DJp1q (73)}

q=1
i S 1, 21y Ot
+ima Z {(L+eP 1 4 2P ))qu
q=—00
~E@ kd
+(L+ ety 62(”+l))qu }D([]l] Joy (ﬁ) (227)

with the coefficientsY satisfying the following properties

~ (DA ~ (A1 ~ (3A1 ~ (i)A1 ~(i)A1

Xop =Xpp =X, and Xoep = Xpp (128)
~ (DA ~ (A2 ~(3A2 ~(i)A2 ~ (i)Az

Xpp =Xpp =X, and Xpep = —Xpp (129)
~@Eqw ~DEqy ~Q)Eqy ~DEq

X,, =€X,, and X,y =€X,, (130)
~E@ 2 DEp ~Q)Ep ~DEp

X,y =€X,, and X,y =€X,, (131)

and solving the following system

A 27

mp

DAz _

mp

C(l)E(l) _

mp

1E
C,;,Z @ _ %

where

Cn(11[3A1 _

C(l)Az —

mp

C(l)E(l) _

mp

1E
Cr(n[; @ _ _

+00 L (1)A; ptil T
ma {aq,, ~Va g [Hgi)p(kd) cos < (p — 59)
q=0 r
T
+(=DPHY, (k) cos = (p + SQ)} } (132)
+00 _ (1)A, pll T
Xy {5q,, - 2D—‘1[H;1>,, (kd) cos s (p — 50)
q=1 P
T
—(=DPHY, (kd) cosz(p+ 5q):| } (133)
I CDEqm Dl T
== > X, {aq,, - 2D—‘1H,§£>,,(kd) cos < (p — 59 +4) (134)
g=—00 p
100 L (DE@ pll T
> > X, {aq,, — 2D—quq(f),,(kd) cos s (p —5q — 4) (135)
g=—00

m 2m
(14"t [Jm_,,(kd/f?») 4 (_pyp o kd/ ﬁ)} (136)
6 Dp DP
m 2m
1+e 6+e [Jm_p(;d/\/ﬁ) B (_1),7%61/*@)} (137)
P p
m+1 2(m+1)
14 3+e [Jmp(l/;d/«/é)} (138)
P
T+emtype2mb [ (kd/v/3) (139)
3 D, '
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Table 3. Character table ofs,.

Caw: EQ) C3D C4,C32) 04,002 04,002

A1 1 1 1 1 1
Ao 1 1 1 -1 -1
B 1 1 -1 1 -1
B> 1 1 -1 -1 1
E 2 -2 0 0 0

4.4. Symmetrgy,

The symmetry groupty, is a non-Abelian group of ordes = 8. Its elements ar&, Cy,
C,, C3, 0., 0y, 0, ando,. E denotes the identity transformatio@i, denotes the operation
of rotation throughr /2 about the main axi®z of the figure 7c), C3 the rotation through
3m/2 about the same axis,, oy, o, ando, the mirror reflections respectively in the planes
Oxz, Oyz, Ouz, andOvz. Five irreducible representations labelled &y, A,, B;, B, and
E are associated with this symmetry grouf,, A,, B; and B, are one-dimensional, while
E is two-dimensional. Table 3 is the corresponding character table.

Table 3 permits us to split up any functighgiven by

+00
f= Z fpépO (140)
p=—00
as a sum of functions belonging to the five irreducible representatiofig, of
F=ha e o (141)
We have
400 .
=3 ST DIPTSR (142)
p=—00
+00 ;
FR=1 Y [ DI IS, — e (143)
p=—00
400 .
e T S N G A L e (W A A =L (144)
p:*OOJr
+00 .
=5 3 = =i =i, — fop)E (145)
p=—00
+00
fEo =1 Z [1— (=17 +irtt —i—rtY f,dr? (146)
p=—00
+00 .
fEo = % Z [1— (-7 —irtt+ i*p+l]fpép9, (247)
p=—00

Here fEo and f£@ denote the two components gf.
After tedious calculations similar to those done for the symmetigsand Cs,, we
obtain theS-matrix in the form

. s ¥, ~ (DA
Swp = by +ima(n” + 0¥ +0% +0") Y TX,, DIF
q=0
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kd kd .
* [Jpq (72) D <72)] +ima®” + 1% + 0> + ")
+00 _(1)A; r kd kd \]
1
x meq DL[]] _JP—IJ (ﬁ) - (_1)q']/>+q <72>_

qg=1
Hiwa(=n" + 1% = 0> +n'")

IX~05 i kd kd \T
x meq Dc[zl] Ip—q <72> - (_1)qu+q (72)

q=1

+ima(=n? + % — n® 4+ 5'P)

XXy o0 kd kd
Yq [1]|: ( ) q

x ¥y AX,. DINJ,_ | —=)+ D1 | —

2, 2 ma V2 V2

ia(—n” 3p+2 5p 7p+2) f }}CDE(DD[HJ kd
+ira(—n" +n +nt—=n -\ —=
e mq q YP—q ﬁ
: p_ . 3p+2 , Bp , . Tp+2 f ~MEa kd (148)
+ima(—n? —n + 0P + ') Xy Dg'Jp—g <—> 148
fam® V2
wheren = €7/4. The coefficientsX satisfy the following properties
~ MDAy ~ (A1 ~(3)A1 ~ (A1 ~ ()AL ~ ()AL
Xpp =Xpp =X, =X, and Xpep =Xy (149)
~ MDAz ~(2Az ~(3)Az ~(HAz ~(i)Az ~ (i)A2
Xpp =Xpp =X, =X, and Xpp ==X, (150)
~ (DB ~(2)B1 ~(3)B1 ~(#H B ~ (i)B1 ~ (i)B1
Xy =-X,, =X, =-X,, and Xpp ==Xy, (151)
~ (DB ~ (2B ~ (3)B2 ~ (4B ~ (i)B2 ~ (i)B2
Xpp =X, =X, =-X,, and Xy =X, (152)
~(Eq 5T DEq ~Eq .l DEq ~@#Eq 63 DEq
Xpp =0X,, Xpp =10X,, and Xpp =01"X,, (153)
~(E@ 63 DEp ~E( a DE@ ~@HEp ”7 DE@
mp =1 Xy Xpp =1"X,, and Xpp =0"X,, (154)

and solve the following system

+00 L (1)Ay ptl
b = ZINx {aq,, —~ ﬁ—"[(—l)q[ﬂﬁ,,(ﬁkd) + (=P HY (v 2kd)]

mp i mq q+p
2 = 2 D,

+2(H?®, (k) cos% (3q — p) + (=DPH\?  (kd) cos%(3q + p)):|} (155)

(W, _ TN DA D! @ p @
=5 lxmq {aqp - D—p[(—l)q[qu(ﬁkd) ) Hq+p(\/§kd):|
=
T 4
+2(H? (k) cos (3¢ — p) — (—DPHY  (kd) cos (3¢ + p))” (156)
Ta T2 ~OB1 pil

e ma {aq,, + D—qp[ - (—1)q[H;?,,(«/§kd) - (—1)"H;i)p(«/§kd)}

q=1

+2(H?®, (k) cos% (g — p) — (=DPH\?  (kd) cos%(&] + p)):|} (157)
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LB, _ T4 — DB Yq DE/l] @ @
p 2 = E qu 8yp + ?D— — (=1 Hq_p(\/ékd) + (_1)qu+p(ﬁkd)
q=0 P

+2(H?®, (k) cos% (g — p) + (=DPH\  (kd) cos%(3q + p)):|} (158)

cWEw _ wa = OEe
mp - 2i £ mq
g=—00
Dt[zll @ T )
X180 + 7 (—D7H?Y (V2kd) — 2sin7(3q — p)Hy2, (kd) (159)
14
10 L (DEg
WEe _ TTa
Cm = A
P 2i £ qu
g=—00
Dz[zll @ T )
X1 8p = 5~ (—D7H? (V2kd) — 2sin-(3q — p)H;2, (kd) (160)
14
where
DA "+ n3m + n5m + n7m _Jm—p (kd/ﬁ) » Jm_;,_p(kd/\/i)-
CHA — _ 4 (—pyp eI T (161)
P 8 D, D,
m 3m 5m m [ 7]
cons _ M A Jn—p(kd/N2) 1) Tt p(kd /~/2) (162)
P 8 D, D,
DB _ 77m _ nSm + 7,}5m _ 777"1 -Jm—p(kd/\/i) » Jm+p (kd/\/é)_
Cop ' =— -Dr— (163)
» 8 D, D,
C(l)Bz _ _nm _ 7]3m + n5m _ n7m -Jmfp(kd/z) + (_1)p Jm+p(kd/2) (164)
np 8 . D, D,
WEwy "+ n3m+2 _ n5m _ 777m+2 Jm—p(kd/ﬁ)
chEn _ _ (165)
4 D,
CcWEe _ 1"~ n¥t2 S T2 g (kd /N/2)
wp D= — . (166)
4 D,

5. Conclusion and perspectives

In this paper, we have developed an exact formalism to calculateS-thatrix valid for

various realistic problems of physics. Since tedisc system is one of the paradigmatic
models in the field of chaotic scattering, we hope that the present work will be useful in this
context. In the second part of this work [25], we shall complete our study by emphasizing
the physical aspects linked to the scattering resonances of the two- and three-disc systems.

6. Appendix. Unitarity and reciprocity of the S-matrix

In this short appendix, the properties of tBematrix (unitarity and reciprocity [26]) are

linked to the properties of the coefficients defining the partial waves and their gradients on
the boundaries of the discs. Unitarity is associated with energy conservation in acoustics
and electromagnetism, and with particle number conservation in quantum mechanics.
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Reciprocity is associated with time-reversal invariance in acoustics, electromagnetism, as
well as in quantum mechanics.
Green'’s theorem (equation (7)) considered Jo& ¢,,, and f = ¢ reads

0= /(';D dSm . [¢;111(£B)Vm¢:12 (x) — ¢:12 (m)vw¢m1 (CE)]

N
+y /3 A4S, « [y @)V, (2) — G, () Vb ()] (A1)
i=1 79D

since¢,,, and¢;, are solutions of the Helmholtz equation. From the asymptotic behaviour
of the partial waves (equation (4)), we easily find the integral ovey,

+00
/3D dSa: * [¢m1(m)vm¢;2(m) - ¢:12(-'B)Vm¢m1(m)] = 2i|:6mlm2 - Z Smll’Sltlzl7i|' (AZ)
o p=—00

From the general boundary conditions given by equations (2) and (3), we obtain for the
integral overa D;

+00
/a 08, - (90 @) Va4, @) = 6, @) Vo, @)] = 27a 37 (A7), BL — ALLB.
i p=—00

(A.3)
Therefore, we finally find that

400 N 4o . ) ) )
> SupSpp = Omm, —ima Y > [AY BOY — AL* B ] (A.4)

p=—00 i=1 p=—00

which can be written in matrix notation

N
SSt=1—iray [AVBIV — BOAIO]. (A.5)
i=1
So, under the condition

N
Z[A(i)BT(i) _ B(i)AT(i)] =0 (A.6)
i=1

the S-matrix is unitary. It should be noted that such a condition is not always satisfied
for the boundary conditions examined in section 3. For example in electromagnetism, for
metallic conductors with a given constant impedaicenergy conservation is not satisfied
because of the Joule effect, so tisats not unitary.

Green’s theorem (equation (7)) considered ot ¢,,, and f = ¢,,, reads

0= /313 dSs - [P, (@) V 2P, () — Py (@) V 1o, ()]

N
3 /3 A0S, + [y () Ve (2) — Gy (2)V by, ()], (A7)
i=179D;

From the asymptotic behaviour of the partial waves (equation (4)), we easily find the integral
over d Dy,

dSw * [¢m1 ($)Vw¢mg(w/) - ¢mz(w)vw¢m1 ($)] (A8)

0Dxo

= 2i [(_1)mlsm2—ml - (_1)m25m1—m2] .
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From the general boundary conditions given by equations (2) and (3), we obtain for the
integral overd D;

dsac ° [(pml(m)vacd);zz (l’/) - ¢:;,2 (m)vxd)ml (w)]

»/BD,

+00
=27a Y [AD B ,—AY B . (A.9)
p=—00

We finally find that

So,

N +o00
Smmy = (D", —ima Y Y (—=)™[AY) BY) - AL B ). (A10)
i=1 p=—00
under the condition
N +4oo ) ) ) )
Do D0 LA B -, — AL, Bl =0 (A.11)
i=1 p=—00

the S-matrix satisfies the reciprocity property

Smlfmg = (_1)”11"""125’”27"11. (A'12)

It should be noted that such a property is not always satisfied for the boundary conditions
examined in section 3. Indeed, if the scatterer is absorptive, there is no time-reversal
invariance.
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